Loop-Erased Random Walk

نویسنده

  • Gregory F. Lawler
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 77 5 v 1 [ m at h . PR ] 2 5 N ov 2 00 6 Colored loop - erased random walk on the complete graph ∗

Starting from a sequence regarded as a walk through some set of values, we consider the associated loop-erased walk as a sequence of directed edges, with an edge from i to j if the loop erased walk makes a step from i to j. We introduce a coloring of these edges by painting edges with a fixed color as long as the walk does not loop back on itself, then switching to a new color whenever a loop i...

متن کامل

The infinite two-sided loop-erased random walk

The loop-erased random walk (LERW) in Zd, d ≥ 2, dimensions is obtained by erasing loops chronologically from simple random walk. In this paper we show the existence of the two-sided LERW which can be considered as the distribution of the LERW as seen by a point in the “middle” of the path.

متن کامل

Convergence of loop-erased random walk in the natural parameterization

We prove that loop-erased random walk parametrized by renormalized length converges in the lattice size scaling limit to SLE2 parametrized by Minkowski content.

متن کامل

Scaling Limit of Loop Erased Random Walk — a Naive Approach

We give an alternative proof of the existence of the scaling limit of loop-erased random walk which does not use Löwner’s differential equation.

متن کامل

Two-sided loop-erased random walk in three dimensions

The loop-erased random walk (LERW) in three dimensions is obtained by erasing loops chronologically from simple random walk. In this paper we show the existence of the two-sided LERW which can be considered as the distribution of the LERW as seen by a point in the “middle” of the path.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998